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The Lagrangian-history method in turbulence theory (Kraichnan 1977) is modified 
such that triple moments are expanded in functional powers of the Lagrangian 
covariance of the symmetric rate-of-strain field instead of the Lagrangian covariance 
of the velocity field. The simplest approximation which results corresponds to the 
abridged Lagrangian-history direct-interaction approximation. It is illustrated by 
application to  the Lagrangian properties of a random velocity field whose Eulerian 
values are frozen in time. Then it is formulated for isotropic Navier-Stokes turbulence. 
The new approximation is expected t o  give reduced energy transfer in the dissipation 
range because the rate of strain along a fluid-element trajectory is statistically 
stationary in stationary homogeneous turbulence while the derivatives of the 
Lagrangian velocity with respect to initial position tend to grow and thereby have a 
longer correlation time. The correlation times of these two entities play corresponding 
roles in the new and old approximations for energy transfer, respectively. 

1. Introduction 
The direct-interaction (DI), Lagrangian-history direct-interaction (LHDI) and 

abridged Lagrangian-history direct-interaction (ALHDI) approximations for turbu- 
lence have in common that each represents the lowest truncation of a systematic 
renormalized perturbation expansion of third-order (triple) moments in functional 
powers of the velocity covariance (Kraichnan 1977, cited hereafter as I) .  I n  the DI 
case, the expansion for single-time triple moments involves only purely Eulerian two- 
time covariances, while in the LHDI and ALHDI cases only purely Lagrangian 
covariances arise. 

The DI  approximation is of central importance because i t  can be represented in 
several ways as the exact description of a model system, thereby assuring important 
consistency properties (Kraichnan 1 9 7 0 ~ ) .  It has given quantitatively accurate pre- 
dictions for the decay of isotropic turbulence a t  moderate Reynolds number (Orszag & 
Patterson 1972), Boussinesq convection a t  high Prandtl number (Herring 1969) and 
eddy diffusion by a Gaussianly distributed velocity field (Kraichnan 1970b). But 
when applied to  high Reynolds number turbulence, the DI  approximation misrep- 
resents energy transfer a t  high wavenumbers because the Eulerian correlation times 
entering the DI  expression for triple moments reflect convective decorrelation effects 
which are irrelevant to the straining process that gives energy transfer. In  two dimen- 
sions, this effect is serious even at moderate Reynolds numbers (Herring et al. 1974). 
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The spurious effects of convective decorrelation on energy transfer are removed in 
the LHDI and ALHDI approximations because Lagrangian rather than Eulerian 
correlation times are involved. In the language of I, the expansions underlying these 
approximations are invariant to random Galilean transformation. The LHDI and 
ALHDI equations have been applied with qualitative success to a broad range of 
turbulence problems : the inertial and dissipation ranges of high Reynolds number 
isotropic turbulence (Kraichnan 1966 a ) ,  one-particle and two-particle dispersion 
(Kraichnan 1966 b) ,  Burgers-equation turbulence (Kraichnan 1968a), stochastic 
acceleration of charged particles by electric fields (Orszag 1969) and Batchelor’s k-l 
range for the spectrum of a passive scalar convected by turbulence (Kraichnan 1968 b).  
In addition to giving proper exponents for various asymptotic spectrum ranges, the 
approximations give a wealth of information about Lagrangian correlations, accelera- 
tion statistics, and other properties not readily accessible to Eulerian treatment. 

The quantitative performance, as measured by the numerical values predicted for 
the coefficients of the asymptotic spectral ranges, is much less satisfactory. The 
ALHDI predictions for Kolmogorov’s constant and the dissipation-range spectrum 
shape are in excellent agreement with data of Grant, Stewart & Moilliet (1962). But 
in the cases of the Burgers equation and convection of a passive scalar, the coefficients 
of the k-2, k-l and k-8 spectrum ranges are incorrect by factors ranging up to three. In 
both these cases, where it is the LHDI theory that is used, the errors correspond to 
overestimates of the spectral transfer associated with the straining of small scales. 
A comparison of the ALHDI results for the decay of isotropic turbulence with com- 
puter simulations a t  moderate Reynolds numbers shows a similar phenomenon 
(Herring & Kraichnan 1978). 

In  the present paper, we raise the possibility that more accurate results for spectral 
transfer a t  high wavenumbers, and some qualitative improvements as well, can be had 
by basing a Lagrangian-history theory on the straining field rather than directly on the 
velocity field. We define the straining field by 

( 1 . 1 )  b,j(x, t )  = ~ u , ( x ,  t ) / h j  + auj(x, t ) / a ~ i ,  

v .  u(x, t )  = 0 (1.2) 

then ui(x, t )  = V-2abij(x, t)/azj, (1.3) 

where ui(x, t )  is the Eulerian velocity field. If 

where V-2 is the solution operator for Poisson’s equation in the given geometry. 
The Eulerian moments which appear in the expansion associated with the DI 

approximation may be expressed indifferently in terms of either the velocity or the 
straining field. But this is not so for the Lagrangian covariances which appear in the 
LH and ALH expansions. The Lagrangian velocity covariance may be expressed in 
terms of the generalized velocity field u(x,tls) defined as the velocity measured at  
time s (the measuring time) in the fluid element whose trajectory passes through the 
point x at  time t (the labelling time). This field is related to u(x, t )  by 

&(x, t l s ) /a t  +u(x, t ) .  Vu(x, t l s )  = 0, u(x, sls) = u(x, 8 ) .  (1.4) 

The LH and ALH expansions of I are obtained by a perturbation treatment of (1.4) 
together with the equation of motion for the Eulerian field U(X, t ) .  
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I n  correspondence to  (1.4), a generalized straining field bij(x, t ( s )  is defined by 

The point of central importance now is that, unless t = s, 

Thus if we expand triple moments in functional powers of Lagrangian covariances of 
the straining field, as we shall do in the present paper, the results are not equivalent, 
order by order, t o  the LH and. ALH expansions of I .  The physical meaning of (1.6) is 
easily stated. The field b,,(x,tls) as a function of s for given x and t measures the 
gradient, in laboratory co-ordinates, of the Eulerian velocity field along the fluid- 
element trajectory. On the other hand, Sr,au,(x, tls)/az, is the velocity difference a t  
time s between two fluid elements whose trajectories are separated a t  time t by the 
infinitesimal distance Sri. I n  general the separation a t  time s will not be Sr,, hence the 
inequality sign in (1.6).  A particular important difference is that in stationary homo- 
geneous turbulence b,,(x, t Is) is statistically stationary as a function of s, provided that 
(1.2) holds so that the transformation t o  Lagrangian co-ordinates is measure- 
preserving. I n  general, the right-hand side of (1.6) is not stationary. 

I n  what follows, we describe expansions and approximations developed from (1.5) in 
the same way that the analysis of I is developed from (1.4). The resulting approxima- 
tions will be called the strain-based Lagrangian-history direct-interaction (SBLHDI) 
and strain-based abridged Lagrangian-history direct-interaction (SBALHDI) approxi- 
mations. Our basic motivation is that the Lagrangian correlation times of the straining 
field may be more appropriate to description of transfer processes a t  small scales than 
the correlation times of the Lagrangian velocity field. 

A question which arises here is why we use the symmetrized strain tensor instead of 
the unsymmetrized tensor, which is a linear combination of bii and the vorticity tensor. 
The answer is that we hope to  construct approximations valid for two as well as three 
dimensions. I n  inviscid two-dimensional Navier-Stokes flow the vorticity of each fluid 
element is a constant of the motion, so that  the Lagrangian correlation time of the 
vorticity tensor is infinite. Thus vorticity must be excluded as a component of the 
basic field if the final approximations, obtained by truncating the expansions a t  lowest 
order, are to  give finite memory times for spectral transfer in two dimensions. 

The new approximations are constructed first for the case of an Eulerian field which 
is random but independent of time. The analysis here is especially simple. Then the 
SBALHDI approximation is obtained for isotropic Navier-Stokes turbulence. The 
analysis is carried out for general dimensionality D 3 2. In  a companion paper 
(Herring & Kraichnan 1978), the SBALHDI equations for the Navier-Stokes case are 
integrated numerically and compared with the ALHDI approximation and with com- 
puter simulations of isotropic turbulence in two and three dimensions. 

2. Some properties of the straining field 
In constructing the strain-based approximations we shall consider b,,(x, t )  to be the 

basic field, ui(x, t )  playing the role of a defining vector for b,,, through ( 1 .  I ) .  Equation 

(1.2) implies bii (x , t )  = 0, a2b,,(x,t)/a~,a~, = 0. ( 2 . l a ,  6 )  
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bii(X,tlS) = 0. 

But there is no corresponding generalization of (2.1 b) ,  nor do we have V.u(x, tJs) = 0 
unless t = s, except in degenerate cases. For all t and s, 

(2.3) bij(X, t l s )  = b,<(X, t l s ) .  

In  order to  exhibit most simply the statistical properties of isotropic homogeneous 
ensembles, i t  is useful to  let the fields obey cyclic boundary conditions in a cubical box 
of side L and let L 4 00. The Fourier-transformed fields are then defined by 

ui(x, t )  = C. Gi(k, t )  exp (ik. x), bij(x, t )  = X fiLj(kj t)  exp (ik. x), (2.4) 

with similar relations for the generalized fields. The sums in (2.4) are over all k 
admitted by the boundary conditions. I n  what follows, we shall omit the tilde where 
there is no danger of confusing x-space and k-space quantities. 

Homogeneity implies that  amplitudes associated with distinct wave vectors are 
uncorrelated while isotropy and incompressibility imply that the covariance of the 
velocity field has the form 

(2.5 1 (L/2r)”(ui(k, 1 )  u;(k, t ’ ) )  = (D - 1)-l  Pij(k) U ( k ,  t, t’), 

where D is the dimensionality and 

The normalization in (2.5) gives 

(JW, t)I2) = [ U ( k  t ,  t )dk (2.7) 

when L + 00. Since the field U(X, t ( s )  need not be incompressible fort 
of its transform has the more general form 

s, the covariance 

(L/27~)~(u<(k,  t ] ~ )  $(k, t’ls’)) = (D - 1)-l qj(k) U ( k ,  t ( s ,  t ‘ l s ’ )  + k 2 k i k j  B(k, t ( s ,  t ’ ( 8 ’ ) .  

(2.8) 

But incompressibility of the Eulerian field requires that the scalar B vanishes if 
t = s or t‘ = s’. 

By (1.1) and (2.5), 

( W n P  (b& 4 b&,W t ’ ) )  = ( D  - 

Qijmn(k) = kjIcnPi,(k) + kjk,Pi,(k) + k ik ,  + qm(k)kikmq,(k). 

Qijvm(k) U ( k  t ,  0 7  (2.9) 

(2.10) where 

The most general isotropic reflexion-invariant tensor Tijma(k) which is symmetric in 
i ,  j and in m, n can be expressed in terms of six independent scalars. But because of 
(2.2), the covariance of the generalized strain field bi,(k, t J s )  depends on only three 
independent scalars. These may be chosen in an infinity of ways. It is convenient here 
to take the form 

( L / 2 7 ~ ) ~  (bij(k, t l s )  b&,(k, t ’ l s ’ ) )  = (D - I)-’ Qij,,(k) U B ( k ,  tls,  IS') 

+Q&,,(k) P ( k ,  t(s,t’)s’)+Q;,,,(k) WB(k,tls,t’Js’), (2.11) 
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where Qij,,(k) and Q:j,,(k) are any linear combinations of Qijm,(k) with 

k2[SijS,,- &D(Si,Sj,+Si,Sj,)], k2(Sij -Dkikj /k2)  (S,,-Dkmk,/k2) (2.12) 

which yield the orthogonality relations 

Qij,,(k) Qijmn(k) = Q&,(k) Q : j m n ( k )  = Q;jmn(k)  Q i j m n ( k )  = 0.  (2.13) 

Note from the form of (2.12) that Q‘ and &”, as well as Q ,  satisfy relations of the form 

Qijmn(k)  = Qjimn(k)  = Qmni j (k ) ,  Q i i m n ( k )  = 0.  (2.14) 

In all of the preceding we have assumed mirror symmetry. Without this assumption 
the general form of the isotropic strain covariance is quite complicated. 

Application of the Eulerian specialization t = s and t’ = s‘ to (2.1 1 )  gives back (2.9), 

(2.15) so that 

The purely Lagrangian specialization t = s and t’ = t will be of particular interest to us. 
The most general form of the Eulerian velocity-Lagrangian strain covariance in the 
isotropic mirror-symmetric case is 

U B ( k ,  t l t ,  t’lt’) = U ( k ,  t J t ,  t ’ l t ’ ) ,  VB(k ,  tlt, t‘lt’) = WB(k,  tlt, t’lt’) = 0. 

( L / 2 7 ~ ) ~ ( ~ i ( k , t ) b ~ , ( k , t l s ) )  = (D- 1)-’(-i) [k,P,,(k)+k,P,,(k)] UB(k, t l t , t l s ) ,  
(2.16) 

where we have used the solenoidal property with respect to i, the symmetry in m and 
n,  and (2.2) to restrict the possible terms. Using 

bi,(k,  t )  = i k i u j ( k ,  t )  + ikiui(k,  t ) ,  

(L/2m)D(bi,(k,  t )  bg,(k,  t l s ) )  = ( D -  l ) - lQi jmn(k)  UB(k,  t l t , t ( s ) ,  we find 

which shows that UB is the same function in (2.16) as in (2.11) and that 

(2.17) 

VB(k,  t ( t ,  t l s )  = WB(k,  t ( t ,  t ( s )  = 0. (2.18) 

In addition to the covariance functions, the renormalized perturbation analysis 
uses Green’s functions which describe the averaged response to infinitesimal perturba- 
tions propagated according to the equations of motion of the Eulerian and generalized 
fields. The Green’s function tensor for the velocity field has been discussed in detail 
(Kraichnan 1965). In the reflexion-invariant isotropic case it has the form 

Gij (k , t ( s , t ‘ l s ‘ ) :=  P,,(k) G(k, t l s , t ‘ ( s ’ )+  k-2kikjG’(k, t l s ,  t’ld), (2.19) 

where G’(k, t ls ,  t ’ ls ’)  vanishes if t = s or t’ = s’. Note that the factor (D - 1)-l in (2.8) 
is omitted in (2.19). The latter equation is normalized such that 

G ( k , t l s , t J ~ )  = 1 .  (2 .20 )  

We reserve discussion of the initial condition (t  = t ‘ ,  s = s‘) on G’(k,  tls, t ’ ls ’ )  until 3 4. 
In correspondence to the covariance behaviour, G’(k, tlt ,  t l s )  vanishes, as do 

G’(lc, tlt ,t’ls’) and G’(k , t [ s , t ‘ [ t ’ ) .  

We shall denote the average infinitesimal Green’s tensor of the generalized strain 
field by Ggmn(k, tls, t ’ ls ‘ ) .  It describes the propagation of infinitesimal perturbations 
of the strain field through the t ,  s plane according to (1.5) and the Navier-Stokes 
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equation, along the same integration path as was described for the velocity-field 
Green’s tensor in Kraichnan (1965). The general isotropic mirror-symmetric form for 
GZmn is 

Ggmn(k ,  tls, t ’ ls ’)  = Qijmn(k)GB(k, t ls ,  t’ls’) +terms in Qijmn(k) and QIjrnn(k) ,  (2.21) 

with G B ( k , t ( s , t ( s )  = I .  (2.22) 

The terms in Q‘ and Q” vanish if t = s, t’ = s’ or t = s = t’, while 

GB(k, t J t ,  t ’ l t ’ )  = G ( k ,  t J t ,  t ’ l t ’ ) .  (2.23) 

3. Strain covariance for a frozen velocity field 
The method given in I for constructing the Lagrangian-history expansions may be 

summarized as follows. First introduce the solution @(x, t )  of the linearized Navier- 
Stokes equation (nonlinear terms removed) and the corresponding field @(x, t l s )  which 
satisfies (1.4) with the nonlinear term removed. Equation (1.4) is then degenerate and 
yields simply 

(3.1) 

Assume (for our present purpose) that  u:(x, t )  has a multivariate-Gaussian isotropic 
distribution. Now reintroduce the nonlinear terms in the equations of motion as 
perturbations, solve by iteration and obtain ui(x, t l s )  as a functional power series in 
@(x, t l s ) .  Use these expansions, together with averaging over the u0 distribution, to  
express moments of u, in particular triple moments and the covariance scalar 
U(k ,  t / s ,  $’Is’), as functional power series in the covariance scalar Uo(k,  t ls ,  t ’ ls’). 
The crucial steps then comprise reverting the series for U to  obtain UO as a 
functional power series in U and substituting the latter series into the expansions 
for the triple moments to express, finally, the latter as power series in U .  This 
procedure yields the Eulerian renormalized expansion, the LH expansion or the 
ALH expansion, the choice being made by exploiting the independence of uy(z, t ( s )  
of themeasuring timet when reverting the covariance series. In  the Eulerian case, only 
Eulerian moments with t = s and t’ = s’ need be considered. In  the LH case, a closed 
system is formed from moments of the form U ( k ,  tls, t l s ’ )  by using (3.1) to alter all UO 
functions to that form before reverting the series for U .  I n  the ALH case, a similar 
procedure is followed but the closed set involves only moments of the form U ( k ,  t l t ,  t l s ) .  
Further details are given in I. 

I n  the present analysis we instead introduce the linearized straining field b$(k ,  t l s )  
in a similar fashion and exploit the relation 

U ! ( X ,  tJs) = $(x, 8). 

b&(k, t ( s )  = b:,(k, 8). 

From ( l . l ) ,  (3.1) and (3.2) we have 

UBO(k, tJs, t’ls’) = UO(k, t ls, t ’ ls ’) .  (3.3) 

We may then express UB(k,  t ( s ,  t ’ ls ‘)  as a functional power series in Uo(k, t l s ,  t ’ ls ’ ) ,  
revert the series after the desired alteration of labelling times, and use the result to  
express triple moments as functional series in UB.  I n  particular, the single-time triple 
moments which control energy transfer may be so expressed. I n  the Eulerian case, the 
final expansion for triple moments is the same as in the original velocity-based analysis, 
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because of ( 1 . 1 ) .  But inequivalent results are obtained in the LH and ALH cases, in 
consequence of (1.6). The lowest truncations of the strain-based LH and ALH expan- 
sions yield the SBLHDI and SBALHDI approximations. 

We shall start by treating a frozen velocity field u(x, t )  constant in time, so that the 
only equation of motion is (1.4) or (1.5).  This of course greatly simplifies the analysis. 
A bonus is that only Green’s functions with time arguments of the form ( t l s ,  t l s )  appear 
in the expansions, after alteration of labelling times in the zeroth-order functions, so 
that by (2.20) and (2.22) all relevant Green’s-function scalars are identically equal to 
one. This means that Green’s functions need not be explicitly introduced a t  all. 

The LH and ALH analysis for the Lagrangian velocity covariance U ( k ,  t l t ,  t l s )  was 
given in I, using an x-space representation. It is easier to carry out the SBLH and 
SBALH analysis in k space. We start by iterating 

(3.4) %j(k, tls)/at = -ik7,% X A  Um(4, t )  b, ,(P, t l4,  
which is the transform of (1.5). Here ZA denotes a sum over all p and q such that 
k = p + q. The result is 

bij(k,tls) = b!&(k, tls)-ik,Z, uk(q,s’ls’)b$(p,s’ls)ds’+higher-order terms, (3.5) 

where we have used u(q, s ‘ )  = u(q ,  s’ls’). Multiplication of (3.5) by its complex con- 
jugate and averaging over the Gaussian distribution of the zeroth-order fields proceeds 
as in I. Then by using the projection operator Qijmn(k) we obtain the scalar expansion 

U B ( k ,  t ( s ,  tls‘) = Uo(k ,  t ls, tls‘) +quadratic and higher-order terms in Uo.  (3.6) 

Only the lowest-order term, shown explicitly, and only the case t’ = t which we have 
taken are needed to construct the SBLHDI and SBALHDI approximations. 

Next all the intermediate (integrated-over) labelling times in (3.6) are changed to 
t according to the LH prescription of I. Reversion then gives 

(3.7) 

An equation of motion for U B ( k ,  t l s )  = U B ( k ,  t l t ,  t l s )  is obtained by multiplying (3.4) 

1: 

Uo(k ,  t l s ,  t ls ’ )  = U B ( k ,  t ( s ,  t l s ’ )  + quadratic and higher-order terms in UB.  

by -ik-2kju:(k, t )  and averaging. This gives 

aUB(k ,  tls)/at = SB(k,  t l s ) ,  

SB(k,  t l s )  = - i ( L / 2 ~ ) ~  k ,X ,  (u,(q, t )  b i j (P ,  t l s )  u ? ( k  t ) ) ,  

(3.8) 

(3.9) where 

and we note from (2.16) and (2.6) that 

-i(L/2n)Dk-2kj{(u2(k,t) b,,(k,tls)) = UB(k, t l t , t l s ) .  (3.10) 

We should also note here that U and UB are real scalars and that 

@ ( k ,  t ] ~ )  = ui( - k ,  t ls ) ,  brj(k, t l s )  = byj( - k ,  tls), 

since the fields in x space are real. 
Now we substitute (3.5) into the right-hand side of (3.9) and average to obtain 

SB(k,  t l s )  = - i (L/2n)”kjkmXA p,[(u;(q, t )  uf*(q, s’Is’))(btj(k, t l s )  u!*(k, t ) )  1: 
+ (uk(q, t )  bqj(q, 8‘1s)) (uz(k,a’ls’) uq*(k, t ) ) ]  ds’ + higher-order terms. 

(3.11) 
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Here we have used the multivariate-normal property of uo, the fact that distinct wave 
vectors are uncorrelated because of homogeneity, and the fact that 

u(k, t )  = uo(k, t )  = uo(k, t l t )  

because the field is frozen, Then the intermediate labelling times s', etc. are changed 
to t ,  the covariances are reduced to scalars by the isotropic formulae and the zeroth- 
order scalars are replaced by expansions in U B  according to (3.7). The result is 

8 U B ( k ,  tls)/at = (27r/L)DI;, ds'[C, UB(k ,  tls') UB(q, t l s )  s: 
-C, UB(k,  tls) UB(q, t ls ' ) ] ,  + higher-order terms, (3.12) 

where Co = (D- 1)-2k-2kjkmPnPni(k) [qiqrn(q) +qjP,m(q)I 

= - (D- 1)-2k-2kjkmqnPni(k) [ a i q m ( s )  +a;.P,,(q)l, (3.13) 

C, = (D- I)-'k-2kjkm~nPrnn(q) [kiP,j(k)+kjP,,(k)] 

= (D- I)-'knL&n(q) (3.14) 

and we have used 

k = p + 9, kiPij(k) = qnPm,(q) = 0, Pii(k) = D- 1. 

Equation (3.12) may be simplified by using 

(27r/L)D C, -+ Idq (L -+ 00) (3.15) 

and the isotropic angle-average formulae 

] (3.16) 
(D - l)-l{Pij(q)} = D-'S,,, 

{qnqiP,m(q)} = q2[D-1S,isjm- (D(D +2))-' ( S n i s j m +  s m i s m j  + 8mnsij)I 

to yield (retaining only lowest-order terms) 

aUB(k, tls)/at = - dq ds'(D-WUB(k, t ls)UB(q, t ls ')  

(3.17) 

If the above analysis is performed instead by proceeding from the transform of (1.4) 
and expressing triple moments as series in U instead of UB,  we obtain (to lowest order) 

aU(k,  t )s) /at  = (2n/L)DX,/ ds'[CA U ( k ,  tls') U(q,  t ls )  -C, U ( k ,  tls) U ( q ,  t l s ' ) ] ,  (3.18) 

where ch = (D-l)-'qnP,i(k)P,,(q)km (3.19) 

and C, is still given by (3.14). The isotropic angle-average of Ch is zero, so that (3.18), 
the LHDI approximation for the Lagrangian velocity covariance, takes the final form 

s s: 
+ [(D- 1) (D+2)]-1q2LIB(q7 t J s )  UB(k,  t ls')}. 

t 

8 

(3.20) 

This is just the transform of the x-space result obtained in I. 
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There are several interesting contrasts between (3.17) and (3.20).  First, the initial 
curvature of U B ( k ,  t ls)  exceeds that of U ( k ,  tls) if both are considered as functions of 
t - s. Since the truncations of the perturbation series are exact a t  second order, these 
initial curvatures are also exact. In general this suggests that the Lagrangian straining 
covariance exhibits a shorter correlation time than the Lagrangian velocity covariance. 
If the Eulerian spectrum is a &function in k ,  (3.17) and (3.20) are solvable analytically, 
as described in I. The ratio of the correlation times is then a monotonic function of 
D (D > 2), rising to  the value one at  D = 00, where (3.17) and (3.20) are identical. For 
D = 3 the ratio is (+$)* and for D = 2 it is ($)&. 

A peculiar feature of (3.17) is that the initial curvature does not go to zero with k ,  in 
contrast to (3.20). This reflects the different effects of small-scale turbulence on large 
scales of the straining field as opposed to the velocity field. The effect on the velocity 
field is an eddy-viscosity type of diffusion. But fluid elements can be substantially 
rotated in a time of the order of the eddy circulation time of the small scales, thereby 
decorrelating the rate of strain in the fluid element with its initial value even 
though the distance of migration through the large-scale field is small. 

Equations (3.12) and (3.18) are the lowest truncations of the SBALH and ALH 
expansions, respectively, as well as the lowest truncations of the SBLH and LH 
expansions. As explained in I, the higher terms of the expansions are not equivalent; 
closed sets involving only time arguments of the form (tlt, tls) are obtained from the 
SBALH and ALH expansions, but the closed sets resulting from the SBLH and LH 
expansions involve functions with more general time arguments (t  Is, tls’). In the case 
of the Navier-Stokes equation, closed sets involving only ( t l t ,  t ls)  type arguments arise 
only from the SBALH and ALH expansions even a t  the lowest level of truncation. 

4. Navier-Stokes turbulence 
The construction of the SRALH and SBLH expansions for the Navier-Stokes system 

follows the same logic as for the frozen-field example, but with some added complica- 
tions. First, the Green’s functions do not all drop out trivially, and must be carried to 
the end. Second, we must handle the fact that the linearized covariances involve only 
a single scalar while, according to (2.11), the actual covariance can involve three 
scalars. Similarly, the actual Green’s function involves three scalars. This implies an 
a priori ambiguity in reverting the expansions of actual covariances and Green’s 
functions in terms of linearized covariances and Green’s functions. This ambiguity has 
already appeared in the frozen-field problem but we have passed over it in order to 
consolidate the discussion here. 

In  the original formulation of the LHDI approximation (Kraichnan 1965), the 
treatment of the Green’s functions was simplified by introducing a fictitious com- 
pressive part of the Eulerian velocity which simply decayed under viscosity and did 
not advect. This led to the simple initial condition 

Gii(x,  tls; x’ ,~]s )  = Sii6(x-x‘). (4.11 

The scalars U and T‘ in (2.8) and G and G‘ in (2.19) were then treated on an equal 
footing. This has certain advantages but it leads to cumbersome expansions, particu- 
larly in the present strain-based analysis. The compressive Eulerian velocity gives a 
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straining-field contribution which does not obey ( 2 . l a ) ,  with the result that even more 
scalars must be admitted in (2 .1  1 ) .  

In  the present work we instead wish to deal only with solenoidal tensors in the 
reverted expansions, as in I. To this end we suppose that the fictitious compressive 
Eulerian velocity encounters an infinite viscosity so that any perturbations which 
originate off the diagonal of the t ,  s plane become solenoidal on the diagonal. This is 
equivalent to  requiring that V in (2.8) vanishes if t = s or t’ = s‘ and that G’ in (2 .19)  
obeys the initial conditions 

G’(k, t l s , t l s )  = 1 ( t  $. s), G’(k , t l t , t l t )  = 0 (4 .2 )  

with corresponding conditions on the Q’ and Q” terms in (2 .21 ) .  The linearized Green’s 
functions are then purely solenoidal and the necessary reversions are solely those of the 
expansions of the scalars U and G in powers of UO and GO in the velocity-based case 
and of U B  and GB in the strain-based case. These expansions can be isolated by use of 
the projection operators P and Q. 

With this background the SBLH and SBALH expansions for triple moments and 
for the moments which give the time derivatives of the Green’s function are determined 
by techniques given in I and our discussion of the frozen-field case. The tediousness 
of the analysis is not really forbidding if attention is restricted to  the SBALHDI 
approximation, i.e. the lowest terms of the SBALH expansion. Then great simplifica- 
tions result from judicious use of (2 .16 ) .  The final form of the SBALHDI equations, 
reduced to scalars, is as follows: 

( a / a t +  2vk2)  UB(k ,  t l t )  = 2 ds(D- 1)-’C3[GB(k, tls) UB(p ,  t l s )  

- G B ( p ,  t l s )  UB(k ,  t ( 4 l  UB(q, tls), (4 .3 )  
(ap t  + vk’) UB(k,  t / s )  

-1: C,GB(p, tJs’) UB(k ,  tls’) UB(q,  s]s ’ )ds’  , I (4 .4 )  

(a/at + vk2) GB( k, t I s )  
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Here p + q = k and the coefficients are given by 

Co = k .  P‘( -9).  P(k).q,  (4.6a, b )  

C, = k .  P’(p). P(k). P(q). k +  P(k): P’(p) [k. P(q).  k], ( 4 . 6 ~ )  

C3 = k .  P(p).  P(k). P (q) .p+k .  P(p). P(q). P(k) . p + k .  P(q). P(p). P(k).p 
+ P(k): D(p) [k. P(q). kl, (4 .64 

C, = p.P(q).P’(p).P(k).p+P(k):P’(p)[k.P(q).k], C, = C,, C, = C,, (4.6e-g) 

C, = k .  P(p). P’(q) . P(k) . p + p .  P’(q) . P(k). P(p) . k, (4.6h) 

CB = k .  P”( - q) .  P(p). P(k). p + p. Pfk). P”( - (1). P(p). k, (4.6 i f  

C, = k .  P(q).k, 

where 

and 
P(k): P(P) [k. P(q).  kl = P,,(k)P,j(P) k,P,,(q) k,, etc.9 

P’(P) = k-,[(k. P) P(P) + (P(P) .  k) PI, 

P’’(q) = F 2 [ ( P .  9 )  P(q) + P) sl. (4.7) 

GB(k,s ls)  = I. (4.8) 

(4.9) 

The initial time when the velocity field is multivariate normal is t = 0. The initial 
condition on GB(k,  tls) is 

The Eulerian modal intensity is given according to  (2.17) by 

U(k, t ,  t )  = UB(k, t l t ) ,  

and for t = 0 this gives the initial condition on UB(k, t l s ) .  

p and q according to  (Fournier & Frisch 1978) 
The integration over q in (4.3)-(4.5) may be expressed as an integration over scalars 

Sdq = /IA A,-,(pq/k)D-2 (sin dp dq, (4.10) 

where A ,  = 2dD/l?(4D) (4.11) 

is the ( D  - 1)-dimensional surface area of a unit sphere in D dimensions, [IA denotes 
integration over the strip in the p, q plane such that k,p and q can form a triangle, and 
01 is the interior angle opposite k in that triangle. 

The original velocity-based ALHDI approximation of Kraichnan ( 1965) is recovered 
from (4.3)-(4.11) by simply replacing all U B  and GB functions by U and G functions 
with the same arguments and replacing all P‘ and P” functions by P functions 
with the same arguments. The coefficients given in (4.6) differ in form from those of 
Kraichnan (1965) because they have not been reduced to explicit functions of the parts 
of the k, p ,  q triangle. Note that, after the replacement of the P’( - q) by P( - q), C, 
gives zero on averaging over angles. Apart from a different normalization with D - 1, 
Co and Cl are the same coefficients as were defined in (3.13) and (3.14). The Go and C, 
terms in (4.4) are identical with those in the frozen-field equation (3.12). 

5.  Discussion 
The strain-based expansions and the SBALHDI approximation to which they lead 

are motivated by the quantitative inaccuracies of the LHDI and ALHDI approxima- 
tions described in $1. Having now exhibited the SBALHDI equations for isotropic 
turbulence, can we offer any reason for feeling t,hat they may in fact be an improve- 
ment ? The analysis of the frozen field in § 3 showed a somewhat smaller correlation 
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time for the Lagrangian straining covariance than for the Lagrangian velocity 
covariance. Since the Lagrangian correlation time helps to determine the magnitude 
of energy transfer in (4.3) and the frozen-field termsreappear in (4.4), this effect is in the 
correct direction to suggest a modest decrease in energy transfer in the SBALHDI 
approximation. Potentially much more important improvement is associated with the 
dissipation-range behaviour in the Navier-Stokes case. Consider the Lagrangian 

(5.1) 

covariance 
B(t(8) = (bij(x, t )  bij(x, t ( s ) )  = 2 k2UB(k, t ( s ) d k .  s 

It can be shown from (4 .3 )  that 
rt 

J -B(tls)ds 
0 

is a measure of the energy transfer rate in very small scales: wavenumbers high in the 
dissipation range. In  the ALHDI approximation, the corresponding role is played by 

(5.2) B’(tJs) = (bi j (x ,  t )  bij(x, t l s ) )  = 2 k2U(k ,  t l s )  dk,  s 
where b&(x,tls) is the right-hand side of ( 1 . 6 ) .  If the turbulence is stationary (or 
quasi-stationary in the small scales), the Lagrangian straining is also stationary, with 
the result that B(tls) is an even function of t - s .  In particular, its slope vanishes at  
t = s. On the other hand it is easy to show (Kraichnan 1966a) that 

(5.3) 

where 2S(k, t )  is the contribution of the nonlinear terms to aU(k, tlt)/at. Equation (5.3) 
is an exact relation. In the ALHDI approximation 2S(k,t) is the right-hand side of 
(4 .3 ) ,  with U B  and GB replaced by U and G. Equation (5.3) gives 

[ a U ( k ,  tls)/atl,=, = S ( k ,  t ) ,  

[aB‘(tls)/at],=, = 2 k 2 S ( k ,  t ) d k .  (5.4) s 
The right-hand side of (5.4) measures the rate of enstrophy production and in general 
is positive, D = 2 excepted. Thus B’(t1s) starts off with a positive slope, in contrast to 
the zero initial slope of B(t1s). This suggests that B’ has the longer correlation time and 
is associated with stronger energy transfer at  small scales. We have then additional 
evidence that the SBALHDI approximation gives lower energy transfer than the 
ALHDI approximation, with an indication that the difference shows up most strongly 
in the dissipation range. 

The quadratic constants of the inviscid Navier-Stokes equation survive at  each 
order of the LH and ALH expansions. The argument in I which establishes this applies 
equally to the SBLH and SBALH expansions. In the ALHDI and SBALHDI approxi- 
mations the quadratic conservation properties can be verified directly from the form 
of the coefficient C, which appears in (4.3). 

Matters become more complicated when the equipartition-equilibrium and fluctua- 
tion-dissipation relations of the inviscid equations truncated at  a cut-off wavenumber 
are considered. In  I it was noted that the exact equipartition-equilibrium relation 

U ( k ,  t ( s ,  t’(s’)cc G(k,  t l s ,  t ’ ls ‘ )  (s  2 s’) (5.51 

UB(k,  t [ s ,  t’ls’)a GB(k,  t ls, t ’ ls ‘)  (s B s’)  (5 .6)  

survives a t  each order of the ALH and LH expansions only if t’ = t .  (For the ALH 
expansion the relation is defined only if also s = t ) .  However 
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is not an exact relation for an equilibrium of the inviscid truncated Navier-Stokes 
system. The difference arises because both the Navier-Stokes equation and (1.4) 
exhibit quadratic constants in the form of sums of squares of u amplitudes, while (1.5) 
does not have such a constant. That is, (1.4) gives 

while ( I  .5) gives a[~n,,(x,tjs)b,,(x,t[s‘)dx I/ at = 0. 

The consequence is that the method of Kraichnan (1965, appendix A) which establishes 
(5 .5 )  does not apply to the case where (1.5) replaces (1.4). A further consequence is that 
the intimate mixing of (1.5) and the Navier-Stokes equation effected by the SBLH 
and SBALH reversions destroys the energy-equipartition property for truncations of 
the SBLH and SBALH expansions. 

In the SBALHDI approximation, the destruction of the energy-equipartition 
solution shows up only from the action of the C, term in (4.5). If that coefficient only is 
replaced by the ALHDI value, the energy-equipartition solution is restored. 

In  two dimensions, where enstrophy is a constant of the inviscid Navier-Stokes 
equation, the situation is reversed. Enstrophy equipartition is also straining equi- 
partition and 

is exact for that equilibrium. This survives for t = t’ in the strain-based expansions 
and the SBALHDI approximation has an enstrophy-equipartition solution. The 
ALHDI approximation does not have such a solution because (1.4) has no quadratic 
constants related to enstrophy. 

k2UB(k,  t ( s ,  t ’ ( s ’ )a  GB(k,  tls, t ’ ls ‘ )  (s 2 s’)  (5.9) 
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